BNL Advanced Accelerator Group FFAG Studies

J. Scott Berg
Brookhaven National Laboratory
DOE HEP Site Visit
9 September 2009

FFAG Introduction

- Fixed Field Alternating Gradient accelerator
- Large energy range (factor of 2 or more) with single arc
- Fixed Field: don't ramp magnets
- Alternating Gradient: reduced aperture (compared to cyclotron)

FFAG Introduction Scaling and Non-Scaling

- Original FFAG: scaling
 - □ Tunes fixed, dynamics independent of energy
 - Nonlinear magnets, but good dynamic aperture
- Linear non-scaling FFAG (used in NF/MC)
 - Apertures smaller than scaling
 - Less time variation with energy than scaling
 - Tunes vary with energy
 - Linear magnets give large dynamic aperture

Tune of Variation with Energy

Motivation for FFAGs in Muon Accelerators

- Want efficient, low-cost acceleration
- Multiple passes through RF
- Recirculating linear accelerators: switchyard limits passes
- Must accelerate rapidly (decays)
- No time to ramp magnets (at lower energies)

Wider Applications of FFAGs

- Anywhere one wishes to avoid magnet ramping
- Reduced aperture from cyclotrons
- Applications
 - High power proton drivers
 - Accelerator driven systems (subcritical reactors)
 - Medical accelerators

Advanced Accelerator Group FFAG Work

- Theoretical studies
- EMMA experiment
- Muon collider acceleration

EMMA Experiment Experiment Goals

- Demonstrate a first non-scaling FFAG
- Study single-particle dynamics in linear non-scaling FFAGs
 - Verify closed orbit properties vs. energy
 - Study longitudinal dynamics
 - Study effects at large transverse amplitude
- Vary lattice and longitudinal dynamics parameters

EMMA Experiment Tunes

EMMA Experiment Time of Flight

EMMA Experiment Longitudinal Dynamics

EMMA Experiment Our Contributions

- Design of main ring
- Specified requirements for range of lattices
 - Magnet displacement and strength variability
 - Cavity tuning range and maximum voltage
 - Magnet, cavity, and pipe apertures
 - Requirements for uniformity
- Described experiment plan
- Showed how one can inject/extract at all energies

EMMA Experiment Injection

EMMA Experiment Tasks in Experiment

- Map tune and time of flight vs. energy
 - Inject at any energy!
- Adjust magnets to get desired tune/time
- Accelerate beam with different RF parameters
- Scan beam at large transverse amplitude
- Vary lattice to study
 - Effect of crossing different resonances
 - Long. dynamics from change in time of flight

EMMA Experiment Tunes

Muon Collider Acceleration

- Many passes through RF
- FFAGs work better with small transverse emittance
- Fast ramping synchrotrons
 - High energy, may have time to ramp
 - Not exactly like usual synchrotrons
 - □ Some magnets ramp, others don't
 - Keep time of flight constant during ramp
 - □ FFAG design techniques, but extra knobs

